Spatio-temporal information analysis of event-related BOLD responses.

نویسندگان

  • Galit Fuhrmann Alpert
  • Fellice T Sun
  • Daniel Handwerker
  • Mark D'Esposito
  • Robert T Knight
چکیده

A new approach for analysis of event-related fMRI (BOLD) signals is proposed. The technique is based on measures from information theory and is used both for spatial localization of task-related activity, as well as for extracting temporal information regarding the task-dependent propagation of activation across different brain regions. This approach enables whole brain visualization of voxels (areas) most involved in coding of a specific task condition, the time at which they are most informative about the condition, as well as their average amplitude at that preferred time. The approach does not require prior assumptions about the shape of the hemodynamic response function (HRF) nor about linear relations between BOLD response and presented stimuli (or task conditions). We show that relative delays between different brain regions can also be computed without prior knowledge of the experimental design, suggesting a general method that could be applied for analysis of differential time delays that occur during natural, uncontrolled conditions. Here we analyze BOLD signals recorded during performance of a motor learning task. We show that, during motor learning, the BOLD response of unimodal motor cortical areas precedes the response in higher-order multimodal association areas, including posterior parietal cortex. Brain areas found to be associated with reduced activity during motor learning, predominantly in prefrontal brain regions, are informative about the task typically at significantly later times.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paradigm Free Mapping: Detection and Characterization of Single Trial fMRI BOLD Responses without Prior Stimulus Information

The increased contrast to noise ratio available at Ultrahigh (7T) Magnetic Resonance Imaging (MRI) allows mapping in space and time the brain’s response to single trial events with functional MRI (fMRI) based on the Blood Oxygenation Level Dependent (BOLD) contrast. This thesis primarily concerns with the development of techniques to detect and characterize single trial event-related BOLD respo...

متن کامل

The Temporal Lobes Differentiate between the Voices of Famous and Unknown People: An Event-Related fMRI Study on Speaker Recognition

It is widely accepted that the perception of human voices is supported by neural structures located along the superior temporal sulci. However, there is an ongoing discussion to what extent the activations found in fMRI studies are evoked by the vocal features themselves or are the result of phonetic processing. To show that the temporal lobes are indeed engaged in voice processing, short utter...

متن کامل

Spatio-temporal analysis of the covid-19 impacts on the using Chicago urban shared bicycles by tensor-based approach

 Cycling is a phenomenon in urban transportation that has the ability to allocate a specific location at any moment in time. Accordingly, spatial analysis of bicycle trips can be accompanied by temporal analysis. The use of a GIS environment is commonly recommended to display the extent of the phenomenon's spatial changes. However, in order to apply and display changes over time, it will requir...

متن کامل

Spatio-Temporal Analysis of Drought Vulnerability using the Standardized Precipitation Index (Case study: Semnan Province, Iran)

This study was conducted to identify drought event and its emerging regions in Markazi desert, Iran with focus onSemnan province in a 30 years statistical period. In this research, 61 stations having adequate data selected and usedafter extracting annual statistic from monthly and daily data. Standardized precipitation index values for each stationwere calculated and classified. The Results hav...

متن کامل

Response-mode decomposition of spatio-temporal haemodynamics.

The blood oxygen-level dependent (BOLD) response to a neural stimulus is analysed using the transfer function derived from a physiologically based poroelastic model of cortical tissue. The transfer function is decomposed into components that correspond to distinct poles, each related to a response mode with a natural frequency and dispersion relation; together these yield the total BOLD respons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 34 4  شماره 

صفحات  -

تاریخ انتشار 2007